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Using the basic equations of classical statistical mechanics relating the singlet densities p ,  and 
p 2  of a binary system to the three partial direct correlation functions c i j ,  a theory of freezing is 
developed. Though the theory is set up for arbitrary concentration, we focus on the freezing of 
the alkali halides. In particular, we show that periodic solutions of the equations for p ,  and p 2  
can coexist with homogeneous solutions. The difference in free energy between periodic and 
homogeneous phases is built up in terms of (i) the volume difference and (ii) the Fourier com- 
ponents of p , ,  p 2  and ci j .  To lowest order, it is stressed that the freezing transition is determined 
by the charge4charge structure factor at its principal peak and by the compressibility. 

1 INTRODUCTION 

In a recent paper’ we have proposed a criterion for freezing of alkali halides 
in terms of the principal peak of the charge-charge structure factor SQQ(k,,). 
From an analysis of available neutron diffraction data from the molten 
alkali halides, we estimated SQQ(kmax) at freezing to be about 5. This we 
proposed as the analogue for ionic fluids of the criterion2 that for simple 
monatomic liquids ,with Lennard-Jones type interactions the principal 
peak of the structure factor S(kma,) has a value of about 2.8 at freezing. 

The basis for the present work is the set of equations determining the 
singlet densities p1 and p2 of a binary system in terms of the partial direct 
correlation f~nct ions .~  These represent the generalization of the equation 
for the singlet density of a monatomic system given by Triezenberg and 

t Permanent address : GNSM-CNR, Istituto di Fisica Teorica dell’Universita’, Trieste, 
Italy. 
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80 N. H. MARCH AND M. P. TON 

Zwanzig4 and by other  worker^.^ This equation has been used by us6 to de- 
velop a theory of freezing for the monatomic system, which has been shown 
to be closely linked to the work of Ramakrishnan and Yussouff.' Our 
analysis rests on the coexistence, for a given liquid direct correlation function, 
of homogeneous and periodic singlet densities. 

In Section 2 below, we construct a variational principle for the difference 
in free energy between homogeneous and periodic phases for the binary 
system, the equilibrium condition for the coexistence of the two phases 
being the vanishing of this free energy difference. We then substitute the 
Euler equations into this free energy to express it in terms of a contribution 
from the volume change at freezing, and a contribution from the Fourier 
components of the singlet densities. These two contributions have opposite 
signs and can therefore balance each other at the coexistence point. Special- 
izing to the alkali halides in Section 3, this free energy is rewritten in terms 
of the number and charge densities and the corresponding direct correlation 
functions. Section 4 discusses the lowest order consequences of this theory, 
where one balances the term in the free energy from the volume change 
against that involving the principal Fourier component of the charge density. 
In an Appendix, the generalisation to a binary alloy of arbitrary composition 
is outlined. 

2 VARIATIONAL PRINCIPLE FOR FREE ENERGY DIFFERENCE 
BETWEEN HOMOGENEOUS AND PERIODIC PHASES FOR A 
MULTICOMPONENT SYSTEM 

From Ref. 3, we can write the equations for the singlet densities p i@)  of a 
system with v components in terms of the partial liquid direct correlation 
functions cij as 

= Jdrcij(rl, r)Vpj(r). 
pi(r1) j =  1 

Following the work of Lovett,' we now integrate Eq. (2.1) under the assump- 
tion that cij(rl, r) depends only on 1 rl - r I as in a liquid. The result is 

ln pi(r1) = Jdrcij(Ir1- r l )p j ( r )  + Ai (2.2) 
j =  1 

where Ai is a constant of integration. 
The question we now pose is whether, given the partial liquid direct 

correlation function c i j ,  this equation can exhibit a periodic solution pip(') 
in coexistence with the obvious homogeneous solution pil, when the constant 
A,  is the same in the two phases. To answer this question, we first construct 
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FREEZING OF ALKALI HALIDES X I  

the difference between the Eqs. (2.2) for periodic and homogeneous singlet 
densities. Regarding the result 

as the Euler equation of a variation problem, we follow the procedure in 
Ref. 6 to set up an expression for the difference AQ in thermodynamic 
potential, R being specifically F - xi Nipi, with F the Helmholtz free energy, 
Ni the number of particles and pi the chemical potential of species i .  Using 
the separation into free-particle terms and terms arising from the inter- 
particle interactions reflected in cij, we obtain 

Varying AQ with respect to the periodic singlet densities, it is readily verified 
that Eq. (2.4) leads back to the Euler Eq. (2.3). 

We next use Eq. (2.3) to remove ln[pip(r)/pil] from Eq. (2.4), when we 
obtain 

AQrnin - 

k ,  T 
_ -  

X 

This quantity should 
Cpip(r1) + pillcij( Ir1 - r~ I )Cpjp(rd - pj11. (2.5) 

vanish at the coexistence point at which the periodic 
singlet densities are to be obtained from Eq. (2.3). 

3 SINGLET DENSITIES AND CHARGE-NUMBER CORRELATION 
FUNCTIONS FOR ALKALI HALIDES 

We now specialize to the case of an alkali halide. It is convenient to work 
with the total density p(r) = pl(r) + p2(r) and the charge density Q(r) = 
pi(r) - pz(r). In the alkali halide, the condition of charge neutrality ensures 
that 1 dzQ(r) = 0. Similarly, we shall introduce the number-charge direct 
correlation functions which we define as 
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82 N. H. MARCH AND M. P. TON 

and 

cQQ(r) = 3Cct t(r) + czz(r> - 2~1z(r)I. 
Rewriting the Euler Eq. (2.3), we then find 

(3.3) 

Similarly AClmin in Eq. (2.5) now takes the form 

3.1 Introduction of Fourier components 

We now Fourier analyze the periodic densities in the appropriate crystal 
structure, by writing 

1 
 PIP(^) = P l O  + 7 c' P l G  exp(iG * r) (3.7) 

G 

and 

1 
P Z p ( T )  = P 2 0  + 7 1' P z c  exp(iG ' {r + h>). (3.8) 

G 

Here, V isthe total volume, G denotes the reciprocal lattice vectors of the 
Bravais lattice of the crystal structure and h is the vector joining the two 
ions in the unit cell of the crystal structure. The prime in the summation 
means G = 0 is omitted. For the alkali halides, p l G  = p Z c  and furthermore 

PI0 = P 2 0  = 3Po (3.9) 
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FREEZING OF ALKALI HALIDES 83 

where p o  is the average density of the periodic phase which is clearly dif- 
ferent from the liquid density p I  in a first-order transition. 

We also introduce the Fourier transforms of cNN(r) ,  etc., as 

L 
c N N ( r )  = - 1 ENN(k) exp(ik. r) 

N k  
(3.10) 

where N is the total number of ions in the liquid phase. The Euler equations 
(3.4) and (3.5) then become 

and 

+ ~ Q Q ( G ) P , G [ ~  - exp(iG. h)]} exp(iG. r). (3.12) 

Finally, the free energy difference (3.6) has the form 

x [ENN(G)IplGl2 cos2($G. h) + EQQ(G)lplG12 sin2(&G. h)]. (3.13) 

This Eq. (3.13) already shows the possibility that ARmi; can be zero, because 
of the balance between the first term involving the volume change, which will, 
in the alkali halides, be negative, and the positive terms from the Fourier 
components plG,  to be determined, along with the volume change, by 
solution of Eqs. (3.11) and (3.12). The condition that A!Jmi, vanishes then 
suffices to determine the freezing temperature T,. 

4 CONSEQUENCES FOR FREEZING OF ALKALI HALIDES 

In the absence of numerical solutions presently of Eqs. (3.11) and (3.12), 
we shall now consider the consequences for freezing of the alkali halides of 
the lowest order approximation to the above theory. This will be motivated 
by the measured structure factors as discussed in Ref. 1. There, we stress that 
the charge-charge structure factor S,, has a very pronounced first peak, 
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84 N. H. MARCH A N D  M .  P. TOSl 

whereas S,,(k) is gas-like in the region of its main (blurred) peak, and S,, is 
everywhere rather small. These observations suggest that the lowest order 
theory would involve just the volume change and the first Fourier com- 
ponent of the periodic charge density. In this approximation Eq. (3.13) 
reduces to 

the summation implying the sum over all GI vectors. Here we note, by 
drawing on the work of Ref. 7, which has also been generalized to multi- 
component systems by Y u s ~ o u f f , ~  that a physically appealing modification 
of the volume terms in Eq. (4.1) would bring out a factor (1 - ENN(0)) which is 
related to the inverse compressibility.” Then, the modified free energy 
difference would have as the term in the volume change 

Clearly in this theory one is describing the freezing transition as a balance 
between the decrease in free energy resulting from the volume change and 
the increase from the first Fourier component of the density, with a weight 
~ Q Q ( G  1). 

Turning to the Euler equations in the same lowest order approximation, 
we note from Eq. (3.1 1) that the right-hand side reduces to the volume change 
term (po  - pI/pI)ENN(0).  Clearly, one must then pick out the constant term 
from the left-hand side. This involves both the volume change and the 
Fourier component p l G l .  Thus, the volume change is determined solely by 
p I G , ,  and ENN(0) in this lowest order approximation. Then one can eliminate 
the volume change from Eq. (3.12), which then relates plG1, Z.,,(O) and 
?QQ(G,) .  This second Eq. (3.12) is in fact relating the relative phase of the 
cation and anion sublattices to p l G , .  Finally, returning to Eqs. (4.1) and (4.2), 
the freezing temperature T’ is seen, by substitution of the volume change 
and plGl  in term of E,,(O) and cQQG,), to have the form 

(4.3) Tf = T j ( ; N N ( O ) s  &(G 1)). 

Thus, the freezing temperature is determined in this lowest order theory by 
the compressibility and by EQQ(Gi), that is, in essence, by the height of the 
main peak of the charge-charge structure factor SQQ. This Eq. (4.3) gives 
some first-principles basis to the freezing criterion for alkali halides pro- 
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FREEZING OF ALKALI HALIDES 85 

posed in Ref. 1. Furthermore, it links the freezing temperature Tf with 
the thermodynamic quantity ENN(0) and the main feature in the liquid 
structure, namely SQQ(G1). 

5 DISCUSSION 

As already stressed, the theory of freezing of multicomponent systems can be 
formulated rather generally and for the binary alloy of arbitrary composition 
the main results are outlined in the Appendix. Though we must eventually 
distinguish ordered alloys from those with only short-range order, the above 
treatment of the alkali halides shows quite clearly that the freezing of a 
suitable binary liquid alloy into an ordered alloy must involve in an im- 
portant way the liquid compressibility and the analogue Of SQQ(Gl), which is 
the principal peak of the concentration-concentration structure factor. Of 
course, in any given case, one will eventually have to study the influence of 
other Fourier components of both the density and the concentration fluctua- 
tions. Our final remark is that for the disordered binary alloy, the treatment 
above could link the phase diagram to compressibility and the long-wave- 
length limit of the concentration fluctuations.' 
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86 N.  H. MARCH A N D  M. P. TOSl 

Appendix 

BINARY ALLOY OF ARBITRARY CONCENTRATION 

We consider a liquid binary alloy with components in concentrations 
c1 and c2 = 1 - cl. We work with the total singlet density p(r) = pl(r) 
+ p2(r) and a difference density A(r) weighted with the concentrations, 
namely 

(A 1) 
For the disordered solid alloy, A(r) is a constant proportional to the dif- 
ference in concentration of the second component between the liquid and the 
solid. For the ordered alloy, it will have a Fourier expansion analogous to 
that of Q(r) for the ionic crystal. 

Defining the density-concentration correlation functions cNN(r), cNc(r) 
and ccc(r) as in Ref. 3, the analogues of Eqs. (3.4)-(3.6) read 

= c,Pl(r) - ClP2W 

and 
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FREEZING OF ALKALI HALIDES x7 

As remarked in the main text, these equations will eventually, for the dis- 
ordered alloy, form the basis for calculating the solidus and liquidus curves 
of the phase diagram. 
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